Authors =============================================================================== MEBS is designed, created and maintained by Valerie De Anda at the University of Texas at Austin, USA (https://cns.utexas.edu/component/cobalt/item/9-marine-science/3799-de-anda-valerie?Itemid=349) Bruno Contrearas Moreira at the Laboratory of Computational Biology at Estacion Experimental de Aula Dei (EEAD/CSIC http://www.eead.csic.es/compbio) in Zaragoza, Spain, and Cesar Augusto Hernandez at the Cellular Physiology Institute of Universidad Nacional Autonoma de Mexico (http://www.ifc.unam.mx/busqueda.php). The program was written mostly by Valerie De Anda, Bruno Contreras-Moreira and Cesar Augusto Hernandez, but includes code and binaries from other authors: Perl5 (https://www.perl.org/get.html), preinstalled in most Linux systems HMMER 3.1b2 (http://hmmer.org) Pfam (http://pfam.xfam.org , PubMed=19920124) Key literature references: ================================================================================ 1. De Anda V, Zapata-Peñasco I, Poot-Hernandez AC, Eguiarte LE, Contreras-Moreira B, Souza V. MEBS, a software platform to evaluate large (meta)genomic collections according to their metabolic machinery: unraveling the sulfur cycle. Gigascience. 2017 Nov 1;6(11):1-17. doi: 10.1093/gigascience/gix096. PMID: 29069412; PMCID: PMC5737871. 2.De Anda V, Zapata-Peñasco I, Blaz J, Poot-Hernández AC, Contreras-Moreira B, González-Laffitte M, Gámez-Tamariz N, Hernández-Rosales M, Eguiarte LE, Souza V. Understanding the Mechanisms Behind the Response to Environmental Perturbation in Microbial Mats: A Metagenomic-Network Based Approach. Front Microbiol. 2018 Nov 28;9:2606. doi: 10.3389/fmicb.2018.02606. PMID: 30555424; PMCID: PMC6280815. 3.Langwig MV, De Anda V, Dombrowski N, Seitz KW, Rambo IM, Greening C, Teske AP, Baker BJ. Large-scale protein level comparison of Deltaproteobacteria reveals cohesive metabolic groups. ISME J. 2021 Jul 30. doi: 10.1038/s41396-021-01057-y. Epub ahead of print. PMID: 34331018. System requirements and installation: ================================================================================ This software has been tested in Linux and MacOSX systems. The software is composed of 3 main scripts (mebs.pl, mebs_vis.py and mebs_clust.py) written in perl, python3 and python3 respectively. 1. mebspl : In order to use mebs.pl you only need to have perl and hmmsearch installed To install hmmsearch see documentation webpage to obtain and compile HMMER from source: http://hmmer.org/documentation.html $ brew install hmmer # OS/X, HomeBrew $ port install hmmer # OS/X, MacPorts $ apt install hmmer # Linux (Ubuntu, Debian...) $ dnf install hmmer # Linux (Fedora) $ yum install hmmer # Linux (older Fedora) $ conda install -c bioconda hmmer # Anaconda 2. mebs_vis.py: For the visualization script you will need python >= 3.6.2 and several python modules numpy matplotlib pandas seaborn To install the above modules including python3 $ sudo apt-get install python3 # Linux (Ubuntu, Debian..) $ sudo pip3 install -U pip # Linux (Ubuntu, Debian..) $ sudo -H pip3 install --upgrade pandas # Linux (Ubuntu, Debian..) $ sudo -H pip3 install --upgrade numpy # Linux (Ubuntu, Debian..) $ sudo -H pip3 install --upgrade scipy # Linux (Ubuntu, Debian..) $ sudo -H pip3 install --upgrade seaborn # Linux (Ubuntu, Debian..) Conda option Istall conda or miniconda depending of your needs. See webpage for more info https://conda.io/projects/conda/en/latest/user-guide/install/index.html Once conda is installed activate conda and use the yml file provided with mebs. conda activate conda env create -f mebs.yml conda activate mebs_env